Data Challenge II

Logo by Stefano Ciprini.
Steering Committee

- Jean Ballet
- Toby Burnett
- Rob Cameron
- Valerie Connaughton
- Seth Digel
- Richard Dubois
- Francesco Longo
- Julie McEnery
- Steve Ritz
- Tracy Usher

- Contact us at dc2steeringlist@glast.stanford.edu
Data Challenges

- A series of end-to-end studies:
 - Produce 1 day; one month; three months of simulated LAT data, release this to the collaboration for science analysis.

- Drives instrument performance studies, exercises detector simulation software.

- Science input – include in the simulation science/astrophysical features we expect to see in the GLAST gamma-ray sky, verify that the analysis tools can find them.

- Tests data servers, user level documentation and more...

- DC1. Modest goals. 1 simulated day.
- DC2, start beginning of CY06. More ambitious goals. Encourage further development, based on lessons from DC1. One simulated month.
- DC3, in CY07. Support for flight science production.
DC Components

- Focal point for many threads
 - Orbit, rocking, pointing history
 - Plausible model of the sky
 - Event Reconstruction
 - Background rejection and event selection
 - Instrument Response Functions
 - Data formats for input to high level tools
 - First look at major science tools – Likelihood, Observation Simulator
 - Generation of datasets
 - Populate and exercise data servers at GSSC & SLAC
 - Code distribution on windows and linux

- Involve new users from across the collaboration

Teamwork!
The road to updated instrument performance analysis – lots of work and progress by lots of people!

Coordinated by the Calibration and analysis group.

• Updated detector simulation to a more realistic detector: dead strips, variable cal gains and thresholds etc.
• Revamped (and improved!) tracker and calorimeter reconstruction software
• Updated background model
• Adopted more realistic orbit and attitude profile
• Updated SAA definition integrated into software
Simulation and Event Reconstruction - 2

- Generate a sequence of successively larger datasets.
 - Iteratively find bugs, refine analysis etc.
 - Generate 100 M background events Aug 31, Sept 8
 - Generate 1B background events Sept 22
 - Final background rejection and event classification analysis complete by Nov 15.
 - Nov 15: Start generating DC2 data: 30 days of a gamma-ray sky + 1B background events.
 - Sample from the residual (i.e. post analysis cuts) background event to create one months worth of residual background.
- Taken a first look at DC2 era performance using these data.
- Started studies of IRF parameterisation.
The Simulated DC1 Sky

Extragalactic diffuse

Galactic diffuse

Fiddling 3C273/279

EGRET 3EG

Our Sky

Julie McEnery
• Taking a step into the unknown!
• One month of LAT data will provide the deepest image of GeV sky ever seen.
• Science model of the sky needs to be more detailed (and imaginative) than for DC1
What is new?

- Sky model needs to be (and will be) much more detailed than the model used for DC1.
 - Greater range of source classes.
 - More detailed models of source behaviour (variable AGN, periodic pulsars...).
 - Refined luminosity distributions and source locations.
 - Updated diffuse Galactic emission model.
 - Possible hardware failures/glitches (i.e. you cannot assume a perfect detector).
 - More detailed orbit/attitude profile and include effect of SAA.
- With a richer sky model, and more mature science tools we anticipate that there will be many detailed and innovative analyses of the DC2 data – there will be lots to discover.
 - Some of this is explicitly listed as a DC2 goal – eg producing a catalog, making AGN lightcurves.
 - Analyses could include additional variability analysis, periodicity analyses, studies of source localisation and studies of extended sources and more.
New Key Source Property - Variability

Pulsars (Razzano, Harding)

Vela phase as observed by EGRET (Kanbach et al. 1994)

Active Galaxies (Chiang, Tosti)

Input to simulation

Vela phase obtained from simulated LAT data

Dayscale AGN flare

LAT simulation

New Key Source Property
Gamma-Ray Bursts – include GBM

Omodei, Band

Joint spectral fit using xspec

BGO

NaI(6)

LAT
Updated Galactic Diffuse Model

- Maps produced using GALPROP can be used by the GLAST simulation code.
- Some artifacts are present in early iterations, the models are being improved and refined.
Science Tools

• Science Tools
 – Continue to improve and be refined.
 – Tested and exercised (along with elements of the sky model) in a series of “checkouts”.
 – These tools are all part of the Standard Analysis Environment (SAE). You may find it necessary to develop additional analysis software.
Upcoming Events

- Extended/Open science tools checkout starting at the beginning of September.
 - Not technically part of DC2.
 - Opportunity for people to be come acquainted with the science tools, help test the sky-model and provide feedback on the data servers and documentation (more later)
- DC2: kickoff meeting in January followed by a closeout meeting 2-3 months later.
 - Large(ish) meeting to encourage maximum collaboration participation in DC2.
 - Unveil final sky simulation data.
 - Describe instrument performance
 - Describe science tools and how to use them.
 - (at closeout) discuss results and lessons learned.
Extended Science Tools Checkout

- Generate at least a month of data using the observation simulator (gammas only, no need for updated response functions).
- Use a sky model to the highest level of detail that we know.
 - Except that the source locations might not be realistic (this will be a lot of work to implement well, so it is best to avoid duplicating it).
- The answers (i.e. MC truth) will be provided at the start so that users can verify that the source properties are simulated correctly and the analysis working correctly.
- The data will be served from the GSSC data server.
- Tutorials on how to use the tools and access the data will be held tomorrow.
Mailing list and webpage

- A new mailing list has been set up for DC2 related communications. Please sign up to the DC2 mailing list for updates and announcements.
High Level DC2 Schedule

- DC2 kickoff mid-Jan (TBD)
- Test, ingest into data servers*, Test (~21 days)
- Catalog/quicklook analysis
- IRF visualisation sensitivity estimator
- Science Tools*
- IRFs (finish Dec 15)

Documentation

- Generate Sky Data, SC data interleave bkg, root->fits (~21 days)
- Dec 5

Sky Model*\, Orbit, SAA*\,

- Nov 15 Instrument performance analysis complete
- develop background interleave method

- Gen big (1B) bkg dataset (start Sept 22)
- Gen 10% bkg/allgamma dataset (start Sept 8)
- Gen 10% bkg/allgamma dataset (start Aug 18)

Recon improvements Cal TDS rewrite etc.

Onboard filter

Background model

Preliminary background rejection etc is anticipated to be ready by mid/end of Sept. This will allow work on IRFs and background interleave to begin in earnest.
Summary

• Preparations for the second data challenge are progressing well.
• Many aspects of the preparations are being worked on in parallel by many people.
• Current focus is generating the large datasets needed for the next round of instrument performance studies.
• Please join the DC2 mailing list (http://www-glast.stanford.edu/cgi-prot/maillist.pl)
• On track for kickoff (release of the final “blind” dataset) in late January 2006.